Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Med Virol ; 93(11): 6116-6123, 2021 11.
Article in English | MEDLINE | ID: covidwho-1349155

ABSTRACT

Virus invasion activates the host's innate immune response, inducing the production of numerous cytokines and interferons to eliminate pathogens. Except for viral DNA/RNA, viral proteins are also targets of pattern recognition receptors. Membrane-bound receptors such as Toll-like receptor (TLR)1, TLR2, TLR4, TLR6, and TLR10 relate to the recognition of viral proteins. Distinct TLRs perform both protective and detrimental roles for a specific virus. Here, we review viral proteins serving as pathogen-associated molecular patterns and their corresponding TLRs. These viruses are all enveloped, including respiratory syncytial virus, hepatitis C virus, measles virus, herpesvirus human immunodeficiency virus, and coronavirus, and can encode proteins to activate innate immunity in a TLR-dependent way. The TLR-viral protein relationship plays an important role in innate immunity activation. A detailed understanding of their pathways contributes to a novel direction for vaccine development.


Subject(s)
Immunity, Innate , Pathogen-Associated Molecular Pattern Molecules/metabolism , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Viral Proteins/metabolism , Virus Diseases/immunology , Viruses/immunology , Animals , HIV/immunology , HIV/metabolism , HIV/pathogenicity , Hepacivirus/immunology , Hepacivirus/metabolism , Hepacivirus/pathogenicity , Herpesviridae/immunology , Herpesviridae/metabolism , Herpesviridae/pathogenicity , Humans , Measles virus/immunology , Measles virus/metabolism , Measles virus/pathogenicity , Pathogen-Associated Molecular Pattern Molecules/chemistry , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/metabolism , Respiratory Syncytial Viruses/pathogenicity , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Viral Proteins/chemistry , Virus Diseases/virology , Viruses/metabolism , Viruses/pathogenicity
2.
Cell Mol Life Sci ; 79(6): 313, 2022 May 23.
Article in English | MEDLINE | ID: covidwho-1857924

ABSTRACT

Gastroenteritis is inflammation of the lining of stomach and intestines and causes significant morbidity and mortality worldwide. Many viruses, especially RNA viruses are the most common cause of enteritis. Innate immunity is the first line of host defense against enteric RNA viruses and virus-induced intestinal inflammation. The first layer of defense against enteric RNA viruses in the intestinal tract is intestinal epithelial cells (IECs), dendritic cells and macrophages under the intestinal epithelium. These innate immune cells express pathogen-recognition receptors (PRRs) for recognizing enteric RNA viruses through sensing viral pathogen-associated molecular patterns (PAMPs). As a result of this recognition type I interferon (IFN), type III IFN and inflammasome activation occurs, which function cooperatively to clear infection and reduce viral-induced intestinal inflammation. In this review, we summarize recent findings about mechanisms involved in enteric RNA virus-induced intestinal inflammation. We will provide an overview of the enteric RNA viruses, their RNA sensing mechanisms by host PRRs, and signaling pathways triggered by host PRRs, which shape the intestinal immune response to maintain intestinal homeostasis.


Subject(s)
RNA Viruses , Humans , Immunity, Innate , Inflammation/metabolism , Intestinal Mucosa/metabolism , Intestines , Pathogen-Associated Molecular Pattern Molecules/metabolism
3.
Science ; 373(6552)2021 07 16.
Article in English | MEDLINE | ID: covidwho-1262378

ABSTRACT

The COVID-19 pandemic has revealed the pronounced vulnerability of the elderly and chronically ill to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced morbidity and mortality. Cellular senescence contributes to inflammation, multiple chronic diseases, and age-related dysfunction, but effects on responses to viral infection are unclear. Here, we demonstrate that senescent cells (SnCs) become hyper-inflammatory in response to pathogen-associated molecular patterns (PAMPs), including SARS-CoV-2 spike protein-1, increasing expression of viral entry proteins and reducing antiviral gene expression in non-SnCs through a paracrine mechanism. Old mice acutely infected with pathogens that included a SARS-CoV-2-related mouse ß-coronavirus experienced increased senescence and inflammation, with nearly 100% mortality. Targeting SnCs by using senolytic drugs before or after pathogen exposure significantly reduced mortality, cellular senescence, and inflammatory markers and increased antiviral antibodies. Thus, reducing the SnC burden in diseased or aged individuals should enhance resilience and reduce mortality after viral infection, including that of SARS-CoV-2.


Subject(s)
Aging , Cellular Senescence/drug effects , Coronavirus Infections/mortality , Flavonols/therapeutic use , Pathogen-Associated Molecular Pattern Molecules/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/immunology , COVID-19/mortality , Cell Line , Coronavirus Infections/immunology , Dasatinib/pharmacology , Dasatinib/therapeutic use , Female , Flavonols/pharmacology , Gene Expression Regulation , Humans , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL , Murine hepatitis virus/immunology , Quercetin/pharmacology , Quercetin/therapeutic use , Receptors, Coronavirus/genetics , Receptors, Coronavirus/metabolism , Specific Pathogen-Free Organisms , COVID-19 Drug Treatment
4.
Cells ; 9(9)2020 09 16.
Article in English | MEDLINE | ID: covidwho-1148288

ABSTRACT

Vaccine design traditionally focuses on inducing adaptive immune responses against a sole target pathogen. Considering that many microbes evade innate immune mechanisms to initiate infection, and in light of the discovery of epigenetically mediated innate immune training, the paradigm of vaccine design has the potential to change. The Bacillus Calmette-Guérin (BCG) vaccine induces some level of protection against Mycobacterium tuberculosis (Mtb) while stimulating trained immunity that correlates with lower mortality and increased protection against unrelated pathogens. This review will explore BCG-induced trained immunity, including the required pathways to establish this phenotype. Additionally, potential methods to improve or expand BCG trained immunity effects through alternative vaccine delivery and formulation methods will be discussed. Finally, advances in new anti-Mtb vaccines, other antimicrobial uses for BCG, and "innate memory-based vaccines" will be examined.


Subject(s)
Adaptive Immunity/drug effects , BCG Vaccine/administration & dosage , COVID-19/prevention & control , Epigenesis, Genetic/drug effects , Myeloid Cells/drug effects , SARS-CoV-2/pathogenicity , Tuberculosis, Pulmonary/prevention & control , Acetylmuramyl-Alanyl-Isoglutamine/immunology , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , COVID-19/immunology , COVID-19/virology , Cross Protection , Epigenesis, Genetic/immunology , Histones/genetics , Histones/immunology , Humans , Mycobacterium tuberculosis , Myeloid Cells/immunology , Myeloid Cells/pathology , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology
5.
J Int Med Res ; 49(3): 3000605211002695, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1145418

ABSTRACT

Over the past several decades, studies have demonstrated the existence of bi-directional relationships between periodontal disease and systemic conditions. Periodontitis is a polymicrobial and multifactorial disease involving both host and environmental factors. Tissue destruction is primarily associated with hyperresponsiveness of the host resulting in release of inflammatory mediators. Pro-inflammatory cytokines play a major role in bacterial stimulation and tissue destruction. In addition, these cytokines are thought to underlie the associations between periodontitis and systemic conditions. Current research suggests that increased release of cytokines from host cells, referred to as the cytokine storm, is associated with disease progression in patients with coronavirus disease 2019 (COVID-19). An intersection between periodontitis and pulmonary disease is biologically plausible. Hence, we reviewed the evidence linking COVID-19, cytokines, and periodontal disease. Plaque control is essential to prevent exchange of bacteria between the mouth and the lungs, reducing the risk of lung disease. Understanding these associations may help identify individuals at high risk and deliver appropriate care at early stages.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , Dental Plaque/immunology , Host-Pathogen Interactions/immunology , Periodontitis/immunology , SARS-CoV-2/pathogenicity , Stress, Psychological/immunology , COVID-19/complications , COVID-19/genetics , COVID-19/virology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/virology , Dental Plaque/complications , Dental Plaque/genetics , Dental Plaque/virology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Lung/immunology , Lung/pathology , Lung/virology , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Periodontitis/complications , Periodontitis/genetics , Periodontitis/virology , SARS-CoV-2/immunology , Signal Transduction , Stress, Psychological/complications , Stress, Psychological/genetics , Stress, Psychological/virology , Tooth/immunology , Tooth/pathology , Tooth/virology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
6.
Virulence ; 12(1): 444-469, 2021 12.
Article in English | MEDLINE | ID: covidwho-1117781

ABSTRACT

Owing to the recent outbreak of Coronavirus Disease of 2019 (COVID-19), it is urgent to develop effective and safe drugs to treat the present pandemic and prevent other viral infections that might come in the future. Proteins from our own innate immune system can serve as ideal sources of novel drug candidates thanks to their safety and immune regulation versatility. Some host defense RNases equipped with antiviral activity have been reported over time. Here, we try to summarize the currently available information on human RNases that can target viral pathogens, with special focus on enveloped single-stranded RNA (ssRNA) viruses. Overall, host RNases can fight viruses by a combined multifaceted strategy, including the enzymatic target of the viral genome, recognition of virus unique patterns, immune modulation, control of stress granule formation, and induction of autophagy/apoptosis pathways. The review also includes a detailed description of representative enveloped ssRNA viruses and their strategies to interact with the host and evade immune recognition. For comparative purposes, we also provide an exhaustive revision of the currently approved or experimental antiviral drugs. Finally, we sum up the current perspectives of drug development to achieve successful eradication of viral infections.


Subject(s)
COVID-19 Drug Treatment , Endoribonucleases/metabolism , RNA, Viral/metabolism , Ribonuclease, Pancreatic/metabolism , Virus Replication/physiology , Eosinophils/metabolism , Humans , Pathogen-Associated Molecular Pattern Molecules/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/immunology
7.
Bioessays ; 43(3): e2000200, 2021 03.
Article in English | MEDLINE | ID: covidwho-917077

ABSTRACT

As the number of infections and mortalities from the SARS-CoV-2 pandemic continues to rise, the development of an effective therapy against COVID-19 becomes ever more urgent. A few reports showing a positive correlation between BCG vaccination and reduced COVID-19 mortality have ushered in some hope. BCG has been suggested to confer a broad level of nonspecific protection against several pathogens, mainly via eliciting "trained immunity" in innate immune cells. Secondly, BCG has also been proven to provide benefits in autoimmune diseases by inducing tolerogenicity. Being an acute inflammatory disease, COVID-19 requires a therapy that induces early priming of anti-viral immune responses and regulates aberrant hyperactivity of innate-immune cells. Here, we hypothesize that BCG can offer reliable spatiotemporal protection from COVID-19 by triggering trained immunity and tolerogenesis, through multiple cellular pathways. We propose further research on BCG-mediated immunoprotection, especially in vulnerable individuals, as a strategy to halt the progress of the SARS-CoV-2 pandemic. Also see the video abstract here https://youtu.be/P2D2RXfq6Vg.


Subject(s)
BCG Vaccine/therapeutic use , COVID-19/prevention & control , Cytokine Release Syndrome/prevention & control , Immune Tolerance/drug effects , Immunity, Innate/drug effects , T-Lymphocytes, Regulatory/drug effects , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Cytokines/genetics , Cytokines/immunology , Gene Expression Regulation , Humans , Immunologic Memory/drug effects , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , RNA, Viral/genetics , RNA, Viral/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/virology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/virology , Vaccination/methods
8.
Dig Liver Dis ; 52(12): 1383-1389, 2020 12.
Article in English | MEDLINE | ID: covidwho-834313

ABSTRACT

The microbiota-gut-liver-lung axis plays a bidirectional role in the pathophysiology of a number of infectious diseases. During the course of severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and 2 (SARS-CoV-2) infection, this pathway is unbalanced due to intestinal involvement and systemic inflammatory response. Moreover, there is convincing preliminary evidence linking microbiota-gut-liver axis perturbations, proinflammatory status, and endothelial damage in noncommunicable preventable diseases with coronavirus disease 2019 (Covid-19) severity. Intestinal damage due to SARS-CoV-2 infection, systemic inflammation-induced dysfunction, and IL-6-mediated diffuse vascular damage may increase intestinal permeability and precipitate bacterial translocation. The systemic release of damage- and pathogen-associated molecular patterns (e.g. lipopolysaccharides) and consequent immune-activation may in turn auto-fuel vicious cycles of systemic inflammation and tissue damage. Thus, intestinal bacterial translocation may play an additive/synergistic role in the cytokine release syndrome in Covid-19. This review provides evidence on gut-liver axis involvement in Covid-19 as well as insights into the hypothesis that intestinal endotheliitis and permeability changes with bacterial translocation are key pathophysiologic events modulating systemic inflammatory response. Moreover, it presents an overview of readily applicable measures for the modulation of the gut-liver axis and microbiota in clinical practice.


Subject(s)
Bacterial Translocation/immunology , COVID-19/immunology , Cytokine Release Syndrome/immunology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/metabolism , Lipopolysaccharides/metabolism , Liver/metabolism , Permeability , Alarmins/immunology , Alarmins/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Cytokine Release Syndrome/metabolism , Disease Progression , Humans , Immunity/immunology , Inflammation , Interleukin-6/immunology , Lipopolysaccharides/immunology , Liver/immunology , Lung/immunology , Lung/metabolism , Microbiota/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism
9.
Mol Diagn Ther ; 24(3): 251-262, 2020 06.
Article in English | MEDLINE | ID: covidwho-634822

ABSTRACT

This opinion article discusses the increasing attention paid to the role of activating damage-associated molecular patterns (DAMPs) in initiation of inflammatory diseases and suppressing/inhibiting DAMPs (SAMPs) in resolution of inflammatory diseases and, consequently, to the future roles of these novel biomarkers as therapeutic targets and therapeutics. Since controlled production of DAMPs and SAMPs is needed to achieve full homeostatic restoration and repair from tissue injury, only their pathological, not their homeostatic, concentrations should be therapeutically tackled. Therefore, distinct caveats are proposed regarding choosing DAMPs and SAMPs for therapeutic purposes. For example, we discuss the need to a priori identify and define a context-dependent "homeostatic DAMP:SAMP ratio" in each case and a "homeostatic window" of DAMP and SAMP concentrations to guarantee a safe treatment modality to patients. Finally, a few clinical examples of how DAMPs and SAMPs might be used as therapeutic targets or therapeutics in the future are discussed, including inhibition of DAMPs in hyperinflammatory processes (e.g., systemic inflammatory response syndrome, as currently observed in Covid-19), administration of SAMPs in chronic inflammatory diseases, inhibition of SAMPs in hyperresolving processes (e.g., compensatory anti-inflammatory response syndrome), and administration/induction of DAMPs in vaccination procedures and anti-cancer therapy.


Subject(s)
Inflammation/drug therapy , Inflammation/metabolism , Molecular Targeted Therapy/methods , Biomarkers/blood , Cell-Free Nucleic Acids/blood , Chronic Disease , Coronavirus Infections/drug therapy , HMGB1 Protein/blood , Homeostasis , Humans , Immunity, Innate/drug effects , Immunity, Innate/physiology , Pathogen-Associated Molecular Pattern Molecules/metabolism , S100 Proteins/blood , Vaccination , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL